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In the King’s Problem, a physicist is asked to prepare a d-state quantum system in any state of her
choosing and give it to a king who measures one of (d +1) sets of mutually unbiased observables on
it. The physicist is then allowed to make a control measurement on the system, following which the
king reveals which set of observables he measured and challenges the physicist to predict correctly
all the eigenvalues he found. This paper obtains an upper bound on the physicist’s probability of suc-
cess at this task if she is allowed to make measurements only on the system itself (the “conventional”
solution) and not on the system as well as any ancillary systems it may have been coupled to in the
preparation phase, as in the perfect solutions proposed recently. An optimal conventional solution,
with a success probability of 0.7, is constructed in d = 4; this is to be contrasted with the success
probability of 0.902 for the optimal conventional solution in d = 2. The gap between the best con-
ventional solution and the perfect solution grows quite rapidly with increasing d.

Key words: Quantum State Retrodiction; Quantum Algorithms.

1. Introduction

In the King’s Problem, as it was termed in [1], a
physicist is asked to prepare a d-state quantum sys-
tem in any state of her choosing and give it to a king
who measures one of d + 1 sets of mutually unbi-
ased observables on it. The physicist is then allowed
to make a control measurement on the system, as well
as any other systems it may have been coupled to in
the preparation phase, following which the king reveals
which set of observables he measured and challenges
the physicist to predict correctly all the eigenvalues he
found. This problem was solved in dimension d = 2
in [2], following which some variants of it were treated
in [3 – 5]. Solutions to the problem were then given in
all prime dimensions [6] and in all prime power dimen-
sions [7]. An experimental realization of the problem
in d = 2 was recently reported in [8].

The King’s Problem is an example of a problem in
quantum state retrodiction, in which the object is to
determine the state of a quantum system at some time
in the past on the basis of measurements made on it
before and after that time. The solutions to the King’s
Problem mentioned in the previous paragraph were all
obtained by allowing the physicist to couple the system
to an ancillary system (or “ancilla”) and make a con-
trol measurement on both the system and the ancilla.
The physicist is able to pull off her trick by prepar-
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ing a suitably entangled state of the system and ancilla
and choosing a control measurement that allows her
to rule out all but one of the permitted combinations
of eigenvalues for each of the observable sets the king
is allowed to measure, thereby allowing her to predict
his results correctly when he finally reveals his choice
of measurement. It should be stressed that the physi-
cist succeeds at a limited task, namely, that of predict-
ing (or retrodicting) what the king found in the one
measurement he did actually make, and that her appar-
ent knowledge of the outcomes of the other measure-
ments has no connection with anything that actually
transpired or might have transpired. A failure to ap-
preciate this subtle (and not at all obvious) point could
leave a spectator with the erroneous impression that the
physicist has succeeded in determining sharp eigenval-
ues for all of several sets of mutually incompatible ob-
servables, in violation of one of the basic tenets of the
quantum theory.

It is interesting to ask how unexpected (or “magi-
cal”) the perfect solutions to the King’s Problem are.
One way of gauging this is to ask how well the physi-
cist can do if she is not allowed to make use of an
ancilla (and hence any entanglement) and is restricted
to making measurements on the system itself. This
method of attack is what is referred to in the title of
this paper as the “conventional solution” to the King’s
Problem. It was shown in [8] that the best conventional
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Table 1. The upper bound on the success probability, as pre-
dicted by (1), for several values of the dimension d.

d 2 3 4 5 8 9
Max P(d) 0.9024 0.7887 0.7000 0.6315 0.4972 0.4667

solution to the King’s Problem in d = 2 has a success
rate of 90.24%, which falls about 10% short of the per-
fect solution. The purpose of this paper is to gener-
alize this analysis to arbitrary dimension d and deter-
mine how close the best conventional solution comes
to the perfect solution. The gap between the best con-
ventional and perfect solutions is one measure of the
crucial role of entanglement in this problem, and may
also serve as a rough indicator of the degree of surprise
one might justifiably expect to experience upon being
shown this trick.

We demonstrate in this paper that the best conven-
tional solution to the King’s Problem in dimension d
has a probability of success, P(d), that is bounded from
above in the manner described by the inequality

P(d) ≤ 2
√

d + d−1√
d(1+ d)

. (1)

For d = 2 the upper bound in (1) reduces to that found
in [8]. Table 1 shows numerical values of the upper
bound in (1) for several values of d, and it is seen
that the gap between the upper bound and unity widens
with increasing d, just as one would expect. This con-
firms the increasing efficacy of entanglement in obtain-
ing a perfect solution to the King’s Problem at higher d,
and lends interest to an experimental realization of
such a solution for d ≥ 3 (with d = 4 suggesting itself
as a particularly favorable case).

It might be asked whether the upper bound in (1) can
ever actually be achieved. Ref. [8] presents a protocol
that achieves this bound for d = 2, while we present a
protocol in this paper that achieves it for d = 4. It can
be shown by a finitary analysis that the bound cannot
be achieved for d = 3, and we have not so far found a
way to achieve it for any other value of d.

This paper is organized as follows. Section 2 lays
out the argument leading to (1), with the proof of a key
assertion being relegated to the Appendix. Section 3
shows the impossibility of achieving the upper bound
in (1) for d = 3 and then goes on to construct a proto-
col that achieves it for d = 4. Finally, Sect. 4 discusses
a variant of the d = 2 problem in which the king is
allowed to measure the spin of his qubit along any of
the body diagonals of a cube and shows that there is a

noticeable gap (of about 7%) between the best ancilla-
assisted and conventional solutions in this case.

2. Derivation of the Upper Bound (1)

Before stating the King’s Problem more precisely,
we need to define what is meant by a set of mutu-
ally unbiased bases (or observables). The orthonormal
bases |αi〉 and |βi(i = 1,2, . . . ,d) of a d-state system

are said to be mutually unbiased if
∣∣〈αi|β j〉

∣∣2 = 1/d
for all i and j. The term “unbiased” refers to the fact
that any state of one basis is equally likely to yield any
state of the other if a measurement in the latter basis
is carried out on it. A set of bases is said to be mu-
tually unbiased if all pairs of bases within it are mu-
tually unbiased. It has been shown [9] that a d-state
system has at most (d + 1) mutually unbiased bases,
and an explicit prescription for constructing such bases
has been given in all prime d [1, 10] as well as in all
prime power d [9, 11, 12]. The various states compris-
ing a basis can always be regarded as the simultane-
ous eigenstates of a complete set of commuting ob-
servables whose eigenvalues provide a unique set of
state labels for each state in the basis. These various
sets of commuting observables, whose eigenstates are
the mutually unbiased bases, are also spoken of as be-
ing mutually unbiased. Thus the notion of mutual un-
biasedness applies equally to bases as it does to the sets
of commuting observables that give rise to these bases.

The King’s Problem, and its solution by the conven-
tional method (which is the object of interest in this
paper), can now be stated as consisting of the follow-
ing steps:

(A) The physicist prepares a d-state quantum sys-
tem in a state of her choosing and gives it to the king.

(B) The king measures a complete set of commut-
ing observables on the system, and notes the eigen-
values of each of the observables he measures. The set
he measures is one of the (d + 1) sets of mutually un-
biased observables of the system.

(C) The physicist carries out a control measurement
on the system. (In this problem there is no coupling of
the system to an ancilla, so the measurement is made
on nothing larger than the system itself).

(D) The king reveals which set of commuting ob-
servables he measured.

(E) The physicist is required to predict correctly
the eigenvalues of all the observables measured by the
king.
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The solution to the problem requires specifying the
physicist’s strategy in steps (A) and (C) and then calcu-
lating her success probability at step (E); the optional
solution is the one that leads to the largest possible
success probability at step (E). What state should the
physicist prepare in step (A)? She could prepare an ar-
bitrary pure or mixed state, but a moment’s reflection
shows that a mixed state can be ruled out. To see this,
note that any mixed state can be expressed as a convex
combination of an optimal pure state and other pure
states that are certainly no superior to it. The loss of
information involved in passing from the optimal pure
state to a mixture, combined with the less than optimal
character of the other pure states involved, will cer-
tainly lead to a decrease in the success probability for a
mixture as compared to a pure state. It in fact turns out
that the optimum pure state is an eigenstate of one of
the (mutually unbiased) sets of observables measured
by the king. This fact is proved in the Appendix, and
we proceed here with this particular choice of prepara-
tion state to establish the bound (1).

The physicist therefore prepares the system in an
eigenstate of one of the unbiased sets of observables
and gives it to the king. If the king measures this par-
ticular set of observables, which he does with a proba-
bility of 1/(d +1), the physicist can predict his results
perfectly, and so she need only worry about design-
ing a strategy that would allow her to maximize her
chances of success if he should happen to pick one of
the other sets of observables. The way she does this
is by measuring an observable whose d nondegener-
ate eigenstates each have a small (ideally zero) over-
lap with all but one state in each of the d bases other
than the preparation basis. When she measures this ob-
servable in step (C), only the eigenstates having a non-
negligible overlap with the state found by the king are
likely to be returned, and so, if she adopts the strategy
of picking the single state within each basis that has a
non-negligible overlap with the the returned eigenstate,
she is highly likely to succeed.

A hint on picking the right control measurement in
step (C) is provided by an examination of the optimal
conventional solution in the d = 2 case [8]. There the
physicist prepares the system (a qubit) in a spin up state
along the z-axis, thereby guessing the king’s result per-
fectly if he measures along this direction, and chooses
her control measurement to be midway between the x-
and y-axes. This “equiangular” choice of measurement
basis might lead one to suspect that a similar equian-
gular choice (i.e. a basis that straddles the remaining

d unbiased bases symmetrically) might also lead to
an optimal solution in the d-dimensional case. A de-
tailed analysis shows that the idea of an equiangular
basis can be used as a convenient crutch to establish
the bound (1), and that this bound can be realized only
if the equiangular basis actually exists.

We now proceed to substantiate these claims. Let
|ψ i

j〉 (i = 0,1, . . . ,d and j = 1, . . . ,d) be the j-th state
of the i-th unbiased basis. Suppose the physicist pre-
pares the system in one of the states of the 0-th basis
and subsequently carries out her control measurement
in the orthonormal basis |χk〉 (k = 1, . . . ,d). The way in
which she uses her control measurement is as follows.
Each state |ψ i

j〉 is associated with one of the measure-
ment states |χk〉, namely the state with which it has the
maximum overlap (if a state has equal overlaps with
two or more measurement states, it is arbitrarily as-
signed to any of them). If, at the end of this assignment,
each measurement state |χk〉 has exactly one state from
each unbiased basis associated with it, the measure-
ment basis will be said to be “well-conditioned” and, if
not “ill-conditioned”. A well-conditioned basis allows
the physicist to make a unique prediction for the state
found by the king in each unbiased basis, but an ill-
conditioned basis does not. The way one gets around
the hurdle posed by an ill-conditioned basis is simple;
one reassigns some of the basis states |ψ i

j〉 to other
measurement states in such a way that the measure-
ment basis becomes well-conditioned (at the cost, of
course, of lowering the detection probability of cer-
tain of the unbiased states). We will assume henceforth
that any control measurement basis is always rendered
well-conditioned before it is used.

Let f (i, j) be the probability that the state |ψ i
j〉 ob-

tained by the king as a result of his measurement
is identified correctly by the physicist; if |χk〉 is the
measurement state that |ψ i

j〉 is associated with, then

f (i, j) =
∣∣〈χk|ψ i

j〉
∣∣2

. The physicist’s success probabil-
ity in guessing the king’s result at step (E) is then

P(d) =
1

d + 1
·1+

d

∑
i=1

d

∑
j=1

1
d + 1

· 1
d
· f (i, j), (2)

which is a weighted sum of the success probabilities if
the king measures in the preparation basis (first term)
or in one of the other bases (second term), it being as-
sumed that he picks a basis totally at random. Then
the term within the double summation in (2) can be
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regrouped according to measurement state to yield

P(d) =
1

d + 1

[
1+

1
d

d

∑
k=1

F(k)

]
, (3)

where each F(k) is the sum of d of the f (i, j).
The success probability (3) achieves its maximum

value if each F(k) achieves its maximum value. We
now show that F(k) ≤ pd, where p =

(√
d + d − 1

)
/

d
√

d, which, when substituted into (3), yields the
bound (1). To show that F(k) ≤ pd, we consider the
problem of constructing a measurement state |χ k〉 that
leads to the maximum value of F(k). The state |χk〉 can
be conveniently expressed as a superposition of all the
states |ψ i

j〉 for which it acts as the “signal”. Suppress-
ing the basis label k for brevity, we can write

|χ〉 =
d

∑
i=1

aie
iφl |ψ i〉, (4)

where the subscript j on |ψ i
j〉, which is a function of

both the measurement label k and the unbiased ba-
sis label i, has also been suppressed. Any measure-
ment state can always be expressed in this form, where
the ai and φi are real parameters. The quantities ai

and φi are to be determined from the requirement that
F = ∑d

i=1

∣∣〈ψ i|χ〉∣∣2
is maximized subject to the nor-

malization constraint 〈χ |χ〉 = 1. This problem can be
attacked using the method of Lagrange multipliers and
leads to a rather complicated set of equations involv-
ing not only the ai and φi but also the phases θ jl aris-
ing from the overlaps 〈ψ j|ψ l〉 = eiθ jl d−1/2 between
pairs of basis states. However a way around this im-
passe is provided by seeking a maximum of F under
the more relaxed conditions that the θ jl are not fixed
but can vary freely, since such a maximum clearly pro-
vides an upper bound on the true maximum. Maxi-
mizing F with respect to the ai, φi and θ jl leads to a
set of equations whose solution is readily seen to be
φi = 0, θ jl = 0 (i.e. all phases vanishing) and all the
amplitudes ai equal to each other. The single ampli-
tude a can then be fixed from the normalization con-
dition 〈χ |χ〉 = 1 and leads to the maximum value pd
for F, where p =

(√
d + d −1

)
/d

√
d. This proves the

inequality F ≤ pd, and hence the bound (1).

A discussion of why the choice of an eigenstate (as
the preparation state) in the above derivation is optimal
can be found in the Appendix.

3. Optimal Conventional Solution for d = 4

The proof of the previous section shows that the up-
per bound in (1) can be achieved if it proves possible
to construct a set of measurement states |χk〉 having the
following properties:

P1. Each state |χk〉 can be expressed as an equally
weighted linear combination of d states |ψ i

j〉, with ex-
actly one state coming from each unbiased basis other
than the physicist’s preparation basis. In other words,
each measurement state |χ〉 (we drop the subscript k)
should be expressible in the form

|χ〉 = N
d

∑
i=1

eiφl |ψ i〉, (5)

where N is a normalization constant and subscripts
have been omitted from the ψ i.

P2. The phases φ ′ in (5) can be chosen so that
〈ψ ′|χ〉 = N

[
1 + (d − 1)/

√
d
]

for all i. This implies,

from (5), that N =
[
d +

√
d(d−1)

]−1/2
and hence that∣∣〈ψ ′|χ〉∣∣2 =

(√
d + d−1

)
/d

√
d for all i.

P3. There exist d orthonormal measurement states
having properties P1 and P2.

The property P2 is particularly difficult to satisfy be-
cause one has only d phases φ ′ with which to cancel
out the d(d −1)/2 phases arising from the inner prod-
ucts of the various |ψ i〉. This phase cancellation can al-
ways be achieved for a single 〈ψ i|χ〉, but then one has
no freedom left to engineer this cancellation for other
values of i. Even if P2 can somehow be satisfied by a
single measurement state, it is far from clear that one
can construct d orthonormal states having this prop-
erty, as required by P3. Thus the task of constructing a
set of measurement states satisfying properties P1-P3
would appear to be impossible in general.

An investigation shows this pessimism to be justi-
fied for d = 3. One begins by trying to construct a state
of the form (5) that satisfies property P2. States of the
form (5) can be constructed in 33 = 27 different ways
by picking one state from each of the three bases avail-
able for the purpose. For each of these forms of the
state (5), one picks the phases φ i so that 〈ψ i|χ〉 has
the required value for a single value of i, but then one
finds that the remaining 〈ψ i|χ〉 do not have this value,
thereby signaling the failure of this construction.

For d = 4, however, the above construction succeeds
and leads to a solution that achieves the upper bound
in (1). To obtain this solution, we note that a four-state
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Table 2. Mutually unbiased sets of observables/bases for a
system of two qubits. Each row shows a pair of commut-
ing observables for a system of two qubits (written as prod-
ucts of the Pauli and identity operators of the individual
qubits), followed by their four simultaneous eigenstates ar-
ranged according to the eigenvalue signatures ++, +−, −+
and −−. Each eigenstate is written |ψi

j〉, with the super-
script indicating its basis (0-4) and the subscript its position
within the basis (1-4). The shorthand notation |ψi

j〉 = abcd

is used to indicate that |ψi
j〉 has the (unnormalized) form

a|00〉+ b|01〉+ c|10〉+ d|11〉 with respect to the standard
basis of the pair of qubits (with i =

√−1 and a bar over a
number indicating its negative). The observables, as well as
the bases, in the different rows of the table are mutually un-
biased.

Z1,1Z |ψ0
1 〉 = 1000 |ψ0

2 〉 = 1000 |ψ0
3 〉 = 1000 |ψ0

4 〉 = 1000

X1,1X |ψ1
1 〉 = 1111 |ψ1

2 〉 = 11̄11̄ |ψ1
3 〉 = 111̄1̄ |ψ1

4 〉 = 11̄1̄1

Y1,1Y |ψ2
1 〉 = 1ii1̄ |ψ2

2 〉 = 1īi1 |ψ2
3 〉 = 1iī1 |ψ2

4 〉 = 1īī1̄

XY,YZ |ψ 3
1 〉 = 11̄ii |ψ3

2 〉 = 11īi |ψ3
3 〉 = 11iī |ψ3

4 〉 = 11̄īī

YX,ZY |ψ 4
1 〉 = 1i1̄i |ψ4

2 〉 = 1ī1i |ψ4
3 〉 = 1i1ī |ψ4

4 〉 = 1ī1̄ī

Table 3. The 32 measurement states, for a system of two
qubits, that satisfy conditions P1-P3 of the text. Each of the
states has the form in (6), with the values of i, j, k, l, b, c and
d indicated.
# i j k l b c d # i j k l b c d
1 1 1 1 1 −i −i −i 17 3 1 3 2 1 1 i
2 1 1 2 2 −i 1 1 18 3 1 4 1 1 −i 1
3 1 2 3 1 1 1 −i 19 3 2 1 2 i i i
4 1 2 4 2 1 i 1 20 3 2 2 1 i 1 1
5 1 3 1 3 1 −i 1 21 3 3 3 4 −i 1 1
6 1 3 2 4 1 1 i 22 3 3 4 3 −i −i −i
7 1 4 3 3 i 1 1 23 3 4 1 4 1 i 1
8 1 4 4 4 i i i 24 3 4 2 3 1 1 −i
9 2 1 1 4 1 1 −i 25 4 1 3 3 i i i
10 2 1 2 3 1 i 1 26 4 1 4 4 i 1 1
11 2 2 3 4 −i −i −i 27 4 2 1 3 1 1 i
12 2 2 4 3 −i 1 1 28 4 2 2 4 1 −i 1
13 2 3 1 2 i 1 1 29 4 3 3 1 1 i 1
14 2 3 2 1 i i i 30 4 3 4 2 1 1 −i
15 2 4 3 2 1 −i 1 31 4 4 1 1 −i 1 1
16 2 4 4 1 1 1 i 32 4 4 2 2 −i −i −i

system can be realized by a pair of qubits and that such
a system possesses the five mutually unbiased sets of
observables (and bases) shown in Table 2. The physi-
cist again begins by preparing a pair of qubits in one
of the states of basis 0 and giving it to the king, who
measures any one of the five sets of mutually unbiased
observables (shown in the first column of Table 2) on it.
Our task is now to design a set of measurement states
that satisfy conditions P1-P3. To this end, we consider

Table 4. The 32 measurement bases that lead to the optimal
conventional solution to the King’s Problem in d = 4. The
states in the various bases are just the ones in Table 3, and
are identified by the same numbers as there (note that each
state occurs in exactly 4 bases). Any one of these bases can
be used by the physicist in her control measurement to solve
the King’s Problem with a success rate of 70%.

1: 1, 11, 22, 32 2: 1, 11, 24, 30 3: 1, 12, 21, 32 4: 1, 15, 22, 28
5: 2, 11, 22, 31 6: 2, 12, 21, 31 7: 2, 12, 23, 29 8: 2, 16, 21, 27
9: 3, 9, 22, 32 10: 3, 9, 24, 30 11: 3, 10, 23, 30 12: 3, 13, 24, 26

13: 4, 9, 24, 29 14: 4, 10, 21, 31 15: 4, 10, 23, 29 16: 4, 14, 23, 25
17: 5, 11, 18, 32 18: 5, 15, 18, 28 19: 5, 15, 20, 26 20: 5, 16, 17, 28
21: 6, 12, 17, 31 22: 6, 15, 18, 27 23: 6, 16, 17, 27 24: 6, 16, 19, 25
25: 7, 9, 20, 30 26: 7, 13, 18, 28 27: 7, 13, 20, 26 28: 7, 14, 19, 26
29: 8, 10, 19, 29 30: 8, 13, 20, 25 31: 8, 14, 17, 27 32: 8, 14, 19, 25

states of the form

|χ〉=
1√
10

[|ψ1
i 〉+ b|ψ2

j 〉+ c|ψ3
k 〉+ d|ψ4

l 〉
]
, (6)

which is just (5) specialized to d = 4 but with the state
subscripts restored and b, c and d standing for complex
numbers of modulus unity. For all 44 = 256 choices of
i, j, k and l we have to investigate whether it is possible
to choose b, c and d so that

∣∣〈ψ1
i |χ〉

∣∣2
=

∣∣〈ψ2
j |χ〉

∣∣2
=∣∣〈ψ3

k |χ〉
∣∣2

=
∣∣〈ψ4

l |χ〉
∣∣2 = 5/8, as required by condi-

tion P2. We find that there are 32 choices of i, j, k and
l that meet this condition. These choices, together with
the corresponding values of b, c and d, are shown in
Table 3. It now remains to see if one can pick four mu-
tually orthogonal states out of this set of 32 that the
physicist can use as her measurement basis. It turns
out that one can actually pick 32 such bases, and they
are shown in Table 4. Any one of these bases can be
used by the physicist as her control measurement ba-
sis. The expression (6) not only indicates the makeup
of each measurement state in terms of the states of the
different unbiased bases, but also encodes instructions
on how the physicist is to respond if she obtains the
state i, j, k, l as a result of her control measurement:
she should guess the state i in basis 1, j in basis 2, k in
basis 3 or l in basis 4. Her success probability with this
strategy is 0.7.

4. A Variation of the VAA Problem in d = 2

In the original VAA version of the King’s Prob-
lem [2], the king is given a qubit and allowed to mea-
sure its spin along any one of three orthogonal direc-
tions. We now consider a slight variation of this prob-
lem in which the king is allowed to measure the spin
along any of the four body diagonals of a cube. We
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show how the VAA basis of [2] can be used to obtain
a solution to the problem that, while not perfect, is ap-
preciably better than the best conventional solution that
can be obtained to the same problem.

The trick begins with the physicist preparing
a pair of qubits in the entangled state |ψ〉 =
(|00〉+ |11〉)/√2, and then giving the first (object)
qubit to the king and retaining the second (ancilla)
qubit in her possession. The king is allowed to mea-
sure the spin of the object qubit along any one of the
four body diagonals of a cube. We take the cube to be
oriented so that the unit vectors from its center to its
eight vertices are

±n̂1 = ± 1√
3
(1,1,1), ±n̂2 = ± 1√

3
(−1,1,1), (7)

±n̂3 =± 1√
3
(−1,−1,1), and ± n̂4 = ± 1√

3
(1,−1,1).

Let |x̂, ŷ〉 denote a state of the system and ancilla qubits
in which the spin of the former is up along x̂ and that
of the latter is up along ŷ. It is easily verified that the
entangled state |ψ〉 can be expressed in four alternative
ways as

|ψ〉 = (|n̂1, n̂4〉+ |− n̂1,−n̂4〉)/
√

2

= (|n̂2, n̂3〉+ |− n̂2,−n̂3〉)/
√

2

= (|n̂3, n̂2〉+ |− n̂3,−n̂2〉)/
√

2

= (|n̂4, n̂1〉+ |− n̂4,−n̂1〉)/
√

2,

(8)

from which it follows that when the king measures the
spin of the object qubit along a particular diagonal he
finds it to be up or down with equal likelihood and also
collapses the ancilla qubit into a spin up state that is the
reflection of the object qubit’s state in the x-z plane.

For her control measurement, the physicist chooses
an observable whose nondegenerate eigenstates are the
four VAA basis states [2]

|χ1〉 =
1√
2
|00〉+ 1

2
eiπ/4|01〉+ 1

2
e−iπ/4|10〉; (n̂4, n̂1)

|χ2〉 =
1√
2
|00〉− 1

2
eiπ/4|01〉− 1

2
e−iπ/4|10〉; (n̂2, n̂3)

|χ3〉 =
1
2

e−iπ/4|01〉+ 1
2

eiπ/4|10〉+ 1√
2
|11〉;

(−n̂3,−n̂2)

Table 5. Each entry in the table is the squared overlap of the
VAA state at the head of its column with the object-ancilla
state at the beginning of its row. Note that each VAA state
has a practically vanishing overlap with one state of each of
the four measurement bases, thus allowing each VAA state
to be used to make a prediction about the outcome of the
king’s measurement in each of the four bases. The numeri-
cal entries in the table arise from the trigonometric quantities
1
2 cos4 θ

2 = 0.311, 1
2 sin4 θ

2 = 0.0223, 3
2 cos4 θ

2 = 0.933 and
3
2 sin4 θ

2 = 0.0669, where θ = cos−1(
√

3) is the angle be-
tween a body diagonal and a fourfold axis of the cube.

|χ1〉 |χ2〉 |χ3〉 |χ4〉
|n̂1, n̂4〉 0.311 0.311 0.311 0.0669

|− n̂1,−n̂4〉 0.0223 0.0223 0.0223 0.933
|n̂2, n̂3〉 0.0223 0.933 0.0223 0.0223

|− n̂2,−n̂3〉 0.311 0.0669 0.311 0.311
|n̂3, n̂2〉 0.311 0.311 0.0669 0.311

|− n̂3,−n̂2〉 0.0223 0.0223 0.933 0.0223
|n̂4, n̂1〉 0.933 0.0223 0.0223 0.0223

|− n̂4,−n̂1〉 0.0669 0.311 0.311 0.311

|χ4〉 = −1
2

e−iπ/4|01〉− 1
2

eiπ/4|10〉+ 1√
2
|11〉; (9)

(−n̂1,−n̂4),

which have the property that the object and ancilla
qubits are significantly polarized along the cube body
diagonals related to each other by reflection in the
x-z plane (the pair of diagonals for each state is indi-
cated in parentheses after it). A straightforward calcu-
lation of the overlaps of the VAA states with the vari-
ous object-ancilla states that can result from the king’s
measurement reveals the results shown in Table 5. One
sees that each VAA state has a practically vanishing
overlap with one state in each of the four bases picked
by the king, thus allowing the physicist to predict what
result the king most likely got if he measured along
each of the four body diagonals. For example, if she
gets the state |χ1〉, she will predict that the king found
spin up along n̂1 or spin down along n̂2 or spin up along
n̂3 or spin up along n̂4. One also sees, by looking across
any horizontal row of Table 5, that any object-ancilla
state produced by the king activates the wrong VAA
state with a probability of only 0.069, thereby allow-
ing the physicist to predict the king’s result correctly
with a probability of 0.933 if she follows this method.

This can be contrasted with the best conventional
solution to the problem. For this purpose, the physicist
prepares the qubit in a spin up state along the diag-
onal n̂1, thus guaranteeing a perfect result if the king
measures along this direction, and performs her con-
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trol measurement along a direction that maximizes her
chances of guessing the king’s result right if he mea-
sures along one of the other directions. A detailed ex-
amination of all directions on the Bloch sphere shows
that the optimum direction for the control measure-
ment makes an angle of arctan(−4

√
2) ≈ 100◦ with

n̂1 and is inclined away from it along the great circle
arc joining it to n̂3. Her success probability with this
choice of control measurement is (15 +

√
33)/24 =

0.864 which is significantly lower than what can be
achieved with the modified VAA method.

5. Concluding Remarks

This paper obtains an upper bound, given in (1),
on the success probability of a conventional solution
to the King’s Problem which may help to clarify the
degree of surprise inherent in the perfect solutions to
this problem found recently in prime [6] and prime
power [7] dimensions. The gulf between the conven-
tional and perfect solutions widens with increasing di-
mension, just as one would expect, and demonstrates
the increasing efficacy of entanglement in securing the
perfect solution at higher dimensions. An optimal con-
ventional solution has been presented in d = 4, with
a success rate of 70%. An experimental realization of
the King’s Problem in d = 4 would be very welcome,
since it would provide a more dramatic confirmation
of the efficacy of entanglement than in the d = 2 case.
The technology for carrying out such an experiment
certainly seems to be in place [13]. On the theoretical
front, it would be interesting to settle the question of
whether the bound in (1) can be achieved for dimen-
sions other than 2 and 4.
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Appendix

We wish to show that using an arbitrary (pure) state
as the preparation state, rather than an eigenstate as in
Sect. 2, does not lead to an increase in the upper bound
in (1). The most general strategy that the physicist can
use in conjunction with an arbitrary preparation state
is the following: she can make educated guesses if the
king measures in r of the bases, and use her control

measurement to infer his result only if he measures in
the remaining s ≡ d + 1− r bases.

We denote her success probability P(d,r) =
Pg(d,r)+Pc(d,s), where the first and second terms are
the parts coming from the guesses and control mea-
surement, respectively. It is not difficult to show that
Pg(d,r) is maximized by choosing a preparation state
that has equal overlaps with one state from each of the
r “guess” bases, with these states then being chosen as
the king’s result in these bases. To see this, write the
preparation state as |Ψ〉 = ∑r

i=1 bi|ψ i〉, where the |ψ i〉
are the guesses states in these bases and the bi are com-
plex amplitudes. We need to maximize the sum of the
guess probabilities, ∑r

i=1

∣∣〈ψ i|Ψ〉∣∣2
, subject to the nor-

malization constraint 〈Ψ |Ψ〉 = 1. An upper bound on
this maximum can be obtained by taking all the b i to be
real and equal to each other, with their common value
being determined by the normalization constraint. This
leads to the result

Pg(d,r) ≤
√

d + r−1√
d(d + 1)

. (A1)

We next turn to the task of obtaining an upper bound
on Pc(d,s). For her control measurement, the physi-
cist measures an observable whose d nondegenerate
eigenstates provide clues of the king’s result if he mea-
sures in one of the s bases excluding the preparation
of guess bases. Let |χk〉 (k = 1, ...,d) denote the eigen-
states of the physicist’s control observable (we will re-
fer to these “measure states”, as in Sect. 2). As before,
we will ensure that the measurement states are well-
conditioned i. e. that each |χk〉 serves as a “signal” for
exactly each of the s bases in question. In an obvious
extension of (4), one can write a typical measurement
state as

|χ〉 =
s

∑
i=1

aie
iφi |Ψ i〉, (A2)

with the same notational conventions as in (4). The
expression for the success probability now changes
from (2) to

Pc(d,s) =
s

∑
i=1

d

∑
j=1

1
d + 1

· p(i, j) · f (i, j), (A3)

where f (i, j) =
∣∣∣〈χk|ψ i

j〉
∣∣∣2

as before and p(i, j) is the

probability that the king obtains the j-th state in the i-
th basis (of the s bases in question) when he carries out
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his measurement. The terms in (A3) can be regrouped
according to the measurement states they are associ-
ated with and written as

Pc(d,s) =
1

d + 1

d
∑

k=1

s
∑

i=1
p(i)

∣∣〈χk|ψ i〉∣∣2

≡ 1
d + 1

d
∑

k=1
F(k),

(A4)

where we have omitted the label j from p(i) and |ψ i〉
because it plays no essential role in what follows (note
that j is completely determined by k and i anyway).
To maximize the success probability (A4), we need to
maximize F(k) for each k. This problem is the same
for each k, so we can look at the maximization of
F = ∑s

i=1 p(i)
∣∣〈χ |ψ i〉∣∣2

with |χ〉 given by (A2) and
subject to the normalization constraint 〈χ |χ〉 = 1. As
in Sect. 2, we can tackle this problem with the aid of
Lagrange multipliers and get an upper bound on F by
taking all the phases φi and θ jl to be equal to zero.
A maximization with respect to the amplitudes ai then
leads to the equations

2
√

d [p(i)+ λ ]ai +[2p(i)+ λ ] ∑
j �=i

a j = 0,

i = 1, . . . ,s,
(A5)

where λ is a Lagrange multiplier and the sum over j
in the second term ranges over all integers from 1 to s
with the exception of i.

The Eq. (A5) are a set of homogeneous linear equa-
tions for the amplitudes ai, and so possess a non-trivial
solution only if the determinant of the coefficient ma-
trix vanishes. This condition fixes the Lagrange multi-
plier λ , and the amplitudes ai can then be solved for.
However, even without a detailed solution, it is obvious
that the ai are of the form

ai = f (p(i),{p( j)| j �= i}) , i = 1, . . . ,s, (A6)

where f is the same function for all the ai, and the
arguments of f have been divided into two groups to
emphasize the different ways in which they contribute
to f . It is obvious that if (A6) is substituted back into
F, a totally symmetric function of all the probabilities
p(i) results. The maximization of F over the p(i) then
leads to a preparation state for which all the p(i) are
the same. Not only is the value of p(i) independent of
i, but it is also independent of k because the maximiza-
tion of F is independent of k. The value of p(i) can be
fixed from the fact that it is the same for all states in

an unbiased basis and that the sum of all these proba-
bilities is unity, from which it follows that p(i) = 1/d.
In other words, the optimum initial state is one that
yields any state in any of the s unbiased bases in ques-
tion with a probability of 1/d. (Whether such a state
actually exists is immaterial; all that matters is that it
can be used to establish an upper bound on the success
probability). The equality of the p(i) implies the equal-
ity of the a(i), with their common value being fixed at[
(d +1)(

√
d +1)

]−1/2 by the normalization constraint
〈χ |χ〉 = 1. Calculating F under these conditions and
putting it back into (A4) yields the upper bound

Pc(d,s) ≤
√

d + s−1

(d + 1)
√

d
. (A7)

We are now in a position to calculate the total success
probability P(d,r). For r = d + 1 we can calculate it
from (A1) alone, while for r = 0 we can calculate it
from (A7) alone with s = d +1; in both these cases we
get the same upper bound,

P(d,0) = P(d,d + 1)≤ 1+
√

d
1+ d

. (A8)

For all other values of r we must sum the expressions
(A1) and (A7), and we find that

P(d,r) ≤ 2
√

d + d−1√
d(1+ d)

, r = 1, . . . ,d. (A9)

Note that the upper bound in (A9) is independent of r
and is greater than that in (A8) for all d ≥ 2. Note also
that the upper bound in (A9) is identical to that found
in Sect. 2, thus proving our claim that an eigenstate is at
least as good as any other choice of initial preparation
state.

In those cases in which the upper bound in P(d,1)
can be achieved by a suitable choice of control mea-
surement observable, there is an alternative to choos-
ing the preparation state to be an eigenstate and pro-
ceeding as in Sect. 2: one can choose the preparation
state to be one of the “measurement” states (i.e. eigen-
states of the control measurement observable) and per-
form the control measurement in the basis from which
the preparation state was earlier picked; this realizes
the upper bound in P(d,d) and is the complement of
the earlier procedure in that the roles of the prepara-
tion and measurement bases are exchanged, as are the
numbers of bases for which guesses are made and for
which the control measurement is used (I am indebted
to Berge Englert for this remark).
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